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1 Introduction

The purpose of this note is to compare the distributions of the minimums of two sets of random vari-

ables, respectively with geometric and exponential distributions, having pairwise matching means.

The geometric distribution is the discrete analog of the exponential distribution and can be applied

to a variety of performance models which can be analyzed by analytic or simulation methods. The

following notation is used:

"* IN = {O, 1,2 .... }, the natural numbers.

"• IN+ = {1,2, 3,. . .}, the positive natural numbers.

"* N = {1,2,..., n}, the first n natural numbers (n is a constant which will be clear from the

context).

"* FA(t) = Pr{A < a}, the cumulative distribution function (CDF) of a random variable A.

"* FA(t) = 1 - FA(t), the complement of the CDF of A (its survivor function).

2 Geometric, modified geometric, and exponential distributions

Two random variables X and Z are said to have a geometric distribution with parameter a E (0, 1),

X -. Geom(a), and a modified geometric distribution with parameter 13 E (0, 1), Z ModGeom(13),

[4] if their probability mass functions (pmfs) are, respectively,

Vk E IN+,Pr{X = k} = a(1 _ a)k-1 and

Vk E IN, Pr{Z = k} = 3(1 - 3)k,

from which it follows that their CDFs at the mass values are

k

Vk E IN+,Pr{X < k} = Za(1 - a)'- = 1- (1 _ a)k and

k 1k=1

Vk E IN, Pr{Z < k} = 3(1 -3)l= 1 -(1 -3)k+,

1=0

and that their expectations are
(00

ELX] = Z ka(1 - a)k- and
k=1

E[Z] = k3(1 - 3)k =
k=O 0

Informally, the difference between a geometric and a modified geometric distribution with the

same parameter is the way in which they count: the geometric distribution starts at one, the

modified geometric distribution starts at zero. Hence, if X - Geom(a), X - 1 - ModGeoin(a).

Equivalently, the geometric distribution models the trial number of the first "success" in repeated
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independent Bernoulli trials, whereas the modified geometric distribution models the number of

trials before the first success.

The above assumes that the "time-step" of the distribution is the same as the units in which

time is measured. This restriction is removed by considering X and Z as random variables assuming

values in {kw : k E IN+} or {kw : k E IN}, respectively, for some time-step w > 0:

X Geom(a,w) = Vt E lR,Pr{X < t} I-(I- )J if t >(0 and- [0 otherwise

Z ModGeom(/3,w) =* Vt E IR, Pr{Z < t}= - (1#-3)[+1 ift >0{ 0 otherwise

which imply

Vk E IN+,Pr{X = kw} = a(1 -a)k-I and

Vk E IN,Pr{Z = kw} = /3(l -#/)k

and
E[X] = and

E[Z] = -

It is well known that both the geometric and modified geometric distributions are discrete

analogs of the exponential distribution. In particular, given an exponential random variable Y

with rate A > 0,

Y -, Expo(A) #= Vt > 0, Pr{Y < t} = 1 - e--"=ýE[Y] = A-1 ,

one can determine a and /3 so that X and Z match Y in expectation:

E[X]= 0 -= A-' = E[Y] =: a = Aw and
a

E[Z] = W( - f)= A1= EIY] =-13 W

and then, using these values for a and /3, the distributions of X and Z approximate that of Y

arbitrarily well as the time-step w is reduced:

lim Pr{X 5 t} = lim - (l - ) = 1 - e-At = Pr{Y < t} and
W10 W10

lim Pr{Z < t} = lirn I - I1- I - = PrY <tW10 W,0 1 +-Aw=

Note that a = Aw E (0, 1) implies w < A-', that is, it is not possible to match the mean of an

exponential random variable Y ~ Expo(A) with a geometric random variable having a time-step

w > A-'. In the special case w = A-', a = 1 and the distribution of X degenerates to a constant:

X - Geom(l,w) - Const(w). In the following, we allow this case and require w E (O,A-']. No

such restriction exists in the case of the modified geometric distribution, where any W > U can be

used.
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3 The minimum of a set of random variables

Consider now three sets of n > 2 independent random variables, {Xi : i E N}, {Zi : i E N}, and

Yj : i E N) with matching means:

Vi E N, Xi - Geon(oai, w), E[XiJ = A.' : Ai*,

Vi E N, Zi - ModGeom(#i, w), E[Zi] = A- *• / i u - + , an(I

Vi E N, Y. -, Expo(Ai), E[Y] =A

Since w E nieN(0, Ai-], we obtain w E (0, AMAX], where AMAX = max{Ai : i E N}.

It is well known that the minimum of each of these sets has the same type of distribution as

the elements of the set [5, 2]:

X( 1) =min{Xi : i E N) Geo n (I - fl(I - ai),o)
iEN

Z(,) =min Zi i E N) -~ ModGeomIi - fJ 0 - Ii, W and

Y(,) = 1in{1• :i E N} - Expo (-Ai).
xiEN )

Hence, X(i), Z(1 ), and Y(j) have different expectations:

E[X(,)]= W( , A) ( k •, = E[Y(,)J and (1)

iEN iEN

Sl(1 -r i)

E[Z(l)] = EN (wA (2)Y~)E[Z )] - - (I - [3i) -i + 11(I + AW) • , =E Y ).(2)

iEN iEN

Theorem 1. For i> 2, E[X(l)] > E[Y(j)] > E[Z(I)]"

Proof. We prove that E[X(I)] > E[Y0j)] by induction on n, hence we make the index n explicit

by writing E[X(,,1,] and EIY(l,,,)].

Base step: For it - 2,

E[X____ = E[Y(,, 2 )1.E[X0 I2)] = - (1 - A14)(1 - A2w) A) + A2 - AA 2w > A + A2

Inductive Hypothesis: Assume that, for a given n, E[X(,,)] > E[Y(1 ,,)]. Then,

> (~~iY'*fl0 - AiW) > 1- E3 AjW
1-fJi Aw (\EN/ iEN iEN

iEN
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Geometric Exponential Modified Geometric
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Figure 1: E[XY( )]. E[(IY('], and E[Z(I)1 (,n = 5. Vi.A, = ) as a function ofw.

Inductive Step: Then E[X(I,+I)] > since

(I - Aiw)) (I - A_,+w)

I - Ez j, (I1- A,,+I~

iEEN 1  >(EV+lA)
> A+

Ai +A,ý, A)A~tlw iENu~n+ I

iEN (iEN/

The proof that E[Z(,)] < E[Y',)] is analogous and is omitte(l. QED.

In other words, the mininmum of n indlependlent exponential ran(lom variables is always strictly

boun(led in expectation by the minimums of n independent geometric andi modified geometric

ran(loin variables with matching means. For example, if n = 2. and A1 = A2 = A.

E[X(,)] = (2A( 1 - A,;/2))-' > E[YIl)] = (2A)-' > E[Z(,)] = (2A( 1 + ,,;/2))-'

E[X(,)] an(l E[Z(,)] coincide with E[Yji,) only in the limit, as ,0 0 (see figure 1):

lim, E[,'[ ,•] = Ii, T - = lira12..= d = L'[1i,1)] andi
U)O'IO 1- j(I A wjO; -1 : + O(W) \iEN

iEN iEN (z)-
lrn E[Z(l)] = lim ± = l A + = A =E[).W,1o Wo-10 + I ( + A•iw) 60 iw+o,)

w10 Ej Ai + o~(l wjiENI

iEN iEN

The convergence of E[X(0)J and E[Z(0)] to E[lIj)] as w 10 can also be derived observing that

E[.X(J, - , < E•[z,)] < E[YliJ < E[-X(,)] < E[ZI + w.

which follows from the fact that (Xi - w) - ModGeom(ni•,w) and (Zi + w,) "Geom(!¢ 3 w). and(

fromt Vi E N., ni < i3i, which imply that E[X.() - Ue] < E[Z(O)] and E[Z(1 ) + 10] > E[Xm)].

The next section contains an explanation for these inequalities.
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4 Stochastic variability

Random variables with the same mean can be compared using the notion of stochastic variability,

described in Ross [3], for which there are two equivalent definitions. Y is said to be stochastically

more variable than X, X <, Y. if

V increasing convex function g, E[g(X)] < E[g(Y)]

or, equivalently, if

Va >_ 0, Fx(t) dt <_ Fy(t) dt.

An additional useful notion codifies the idea that the remaining lifetime of a random variable
conditioned on exceeding some value a has never groater expectation (NBUE: New Better Than

Used in Expectation), or never smaller expectation (NWUE: New Worse Than Used in Expecta-
tion), than the original lifetime. Formally, a nonnegative random variable A is NBUE if

Va > 0, E[A - a A > a] • E[A]

and is NWUE if

Va > 0, E[A - a A > a]> E(A].

Ross lists some important consequences of these definitions:

"* If X and Y are nonnegative, X <, Y, and E[X] = E[Y], then -X <v -Y.

" If g : IR" - IR is an increasing convex function, if Vi E N,Xi :5v 1', {Xi : i E N} are

independent, and {1y : i E N} are independent, then

g(x* If, i N, ad) ix a g(Yw h Y2,a as Yt).

"* If X is NBUE, and Y is exponential with the same mean as X, then X <v Y.

"• If Z if NWUE and Y is exponential with the same mean as Z then Y _<v Z.

These last two facts are used to relate X - Geom(a, w), Z , ModGeom(/3, U), and Y - Expo(A)
with the same mean, by showing that the geometric distribution is NBUE and that the modified

geometric distribution is NWUE. Let X - Geom(a,w), Z - ModGeom(1i,w), and choose any

a > 0. Using the memoryless property of the geometric distribution, we can derive:

E[X-a X >a] = E[XIX>a]-a= [a]J +E[X]-a<E[XI and

E[Z - a Z > a] = E[Z Z > a] - a =([a]j+I)w+ E[Z]-a> E[Z].

Therefore, X <1 Y _< Z.

Considering again the three sets of independent random variables with matching means {Xi

i E N), {Z; : i E N), and {)Y : i E N) observe that

min{ai : i E N) = - max{-ai : i E N).



Since max is an increasing convex function and Vi E N, -X, _<1 -1 !51 -Zi,

max{-X, : i E N) <: max{-Y, : i E N} <! max{-Z, : i E N},

implying that

-E[max{-Xi: i E NJ] 2! -E[max{-Y : i E NJ] ? -E[max{-Z, : i E NJ],

and thus that

E[min{X, : i E N)] = E[X()] >_ E[min{ Y : i E N}] = E[Y()] >_ E[min{Zi : i E N}] = E[Z(1)].

5 Matching the minimums by changing the time-step

This section presents an explanation for the existence of the strict Inequality (1), and its quantifi-
cation, based on the possibility of a tie for the minimum in the set {Xi : i E N}. A confirmation
of this intuition is found by defining a new random variable, W(1), obtained dividing X(1 ) by the

expected number of random variables tied for the minimum: the expectation of this "weighted

minimum" W(1) is indeed the same as that of Yj)"
The discrete nature of the geometric distribution implies that several random variables in

{Xi : i E N) might coincide with X(1 ). Define I[i] to be the the set of indices among {l,. .n}
corresponding to such random variables (/[] is itself random):

1[]i = {i N: = X(1 )} _ N,I[11 # 0.

The pmf of I'] is

Vs C N,s 0, Pr{J l= } = Pr{Vi E s, Xi= X() AVj E N\s, Xj> X(0 )
00

= yPr{ViEs, Xi=kwAVjE N\s,Xj >kw}
k=1

= •( H t(1 - ao )k-I (a, - )k )
k=l \iEs \EN\s

-E !-! o a i I a ))-
k=1 (Es (jEN\s (1(N

1- 'i(l -a)

lEN

This result is more easily obtained observing that, because of the absence of memory of the geo-
metric distribution, I[, and X(1 ) are independent, hence Pr{f q = s} is simply the product of the
one-step probability of success for the elements of .4 and of the one-step probability of failure for
the elements not in s, normalized by the probability that at least one success occurs.
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For example, if n = 2, the three possible values for 1(11 and their probabilities are:

Pr{ 1 j]= III} = Pr{X1 < X 2} = al(I - a2) Al - AlA2W
1 2(P -O 0) A2 - A ] A2 W

Pr{IfI] = {2}} = Pr{Xj < X 2 } = 1- (1- aI)(1 -, 2 ) - A1 + A2 - A1A2W

Pr{I[I] = 11,2}1 = Pr{Xj = X21 = a 1 0 2  A1 A2W
S1- (1 - al)(1 - 2 ) - Al + A2 - AIA 2W

In general, the probability that a particular Xi is equal XO), or that i E (11, is

00

Pr{Xi= X()} = •Pr{Xi=k 'wAVjE N,j i, Xjkw}
k=1

00

1: ki(Il -a )k-, aj (1 )k- I

k=Z jZN,jli
00

E a, (I _(1a I)k-
k=1 jEN

aj)'

*iEN

hence, the expected number of completions at time X(1 ) among {Xi : i E N} is

ZiE
E[II[l]I] = I Pr{X, = X()} = 0N

iEN 1- fl(1-a1 )
jEN

We can define the "weighted" random variables {Wj : i E N}, where

ViE N,W Xi Geom ai, -Geom n w. -l- a .)

iEN

which are still geometrically distributed random variables with the same success probabilities as

their original counterparts {Xi : i E N}, but with a reduced time-step. Then,
{ X i }~ X(,)

W(l) = min{W: i E N} = min e[-[ [Ii1 ] i E N - [1 ]

takes into account simultaneous completions by dividing the minimum completion time by the

expected number of completions (the corresponding quantity for the continuous case is still simply

Yj), since the probability of simultaneous completions is zero in this case). The expected value

of the weighted nminimum for the geometric case coincides with the expected minimum for the

exponential case:

I a)

[W E X(i) - E[X(=)] 1- f)__ (E A) e[Y(1)]

iEN iEN

1- (I - aj)
j7N



We conclude this section by observing that, while the result E[W(I)] = E[Y(l)] seems to imply
that exact ties are the cause of Inequality (1), this is not correct, since the inequality holds even

when ties are not possible. This can be shown by considering a set of geometric random variables

Xt! : i E N}, where

Vi E N, Xlý - Geom(av,w i), E[X-] - - ' = E[Yi]

and, Vi E N, Vj E N,i ý j, the ratio wi/wj is not a rational number, hence, it is not possible to

find two integers ki and kj that would results in a potential tie at time kiwi = kjwj.

6 Matching the minimums by time-shifting

In the previous section, we forced the expectation of the minimums of {Xi : i E N} and {Yi:
i E N} to coincide by reducing the time-step of the geometric distributions, that is, transforming

{Xi : i E N} into {Wi i E N}. While the result E[W(l)] = E[Y(I)] is appealing, the weighted

random variables {Wi i E N) do not match the original {Y : i E N} in expectation. A more

interesting result would be to modify our initial set of random variables {Xi : i E N) so that both

the individual random variables and the minimum match the corresponding exponential quantities

in expectation.

In this section, we accomplish exactly this by introducing the "shifted geometric" distribution,

a generalization of both the geometric and modified geometric distribution. Given 0 < a < 1,

w > 0, and a E IR, we say that S has a shifted geometric distribution with parameters Ca, w, and

a, S - ShiftGeom(a,w, a), if its pmf is

Vk E IN, Pr{S = kw + o} = a(1 - a)k

which implies that its CDF is

VtE 1R, Pr{S< t}= { 1 -(1 -a)L- i+l ifot>h r
- 1 0 otherwise

and that its expectation is
1-aC

E[S]= -w + a.
Ot

In other words, given a random variable A ModGeom(a), w > 0, and a E R, S = Aw + a

ShiftGeom(a,w, a). Figure 2 shows the relationships between the geometric, modified geometric,

shifted geometric, and exponential distributions.

Given Y - Expo(A), we can again consider the condition under which S and Y have the same

expectation:

S+ a = = . (3)

Since a is a probability, it can only have values in [0, 1]. Furthermore, E[S] = 0o when a = 0, so

we exclude this case. Then, S and Y have the same expectation for any choice of w and a, as long

as
wA

1 - a+A - _

and a is set according to Equation (3). A few observations are of particular interest:
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Z'-ModGeom(a)

S'= Z'+ a Z=Z'w X'= Z'+ I

[S'-ShiftGeom(ma), ZMoemo.) [X'-Geom(0t,

S =(S' -0)0) + S=Z~oXZ t ='

FS -ShiftGeom(amc) Y Iim6A 0.U.Y Z X -Ocom(a.wo)
z=L [YicoJ 11'

Y = lim('0,•ffiL S - a Y = lim4•L°,.v)x X

s = L/voJ + oa x = ri/wol

Y -Expo(;X)

Figure 2: Relationships between the distributions discussed in this paper.

"* Once the value of E[S] is fixed at A-', decreasing the time-shift a by b, possibly below zero,

causes a decrease in a, so that E[AJ increases by 6/w and E[S] = E[A]w-a remains constant.

Since E[A] can be arbitrarily large, this explains why there is no lower bound for a.

"* If a = 0, S - ModGeom(a,w).

"* If w < A-' and a = w, S - Geom(a,w).

"* If a = A-', a = 1, hence S - Const(a) - Const(A-1).

Consider now a set of modified geometric random variables with time-step one, {A, : i E N}

and the set of shifted geometric random variables {Si : i E N} obtained from them by changing

the time-step to w and applying a time-shift a:

Vi E N, A, - ModGeom(ai), Si = Aiw + a =: .i -, ShiftGeom(ci,w, a)

and set the parameters {fa : i E N} so that:

Vi E N, E[Si] 1- w+a=A =E wAi= •w~a = a, = E[YaA•+wA
ai I -- oAi + WAi

Since Vi E N, 0 < vi _< 1, the maximum value of a is

a < = =(max{Ail MAX

The expectation of S(,) = min{Si : i E N} = A(,)w + a is then

fI(1- ai)

E[S(,)] = iEN -+t
1-( f(- a,)

iEN

9



fl (1 -aA ,
ZEN -a A +_ _A_

iEN 1 a + A0N)(I -al-

iE N +PnA + C

whr + ( A i) a qn=-] (-A +w ) - 03
iEN iEN

where
P,,: 0 - o,~) and q,, (I H - aj+ w•,)

iEN iEN

satisfy

"* Va < AAX,-p, <q,,.

"* PIL=o = 1, q,,j0 =o = 11(1 + 03A,) > 1.
iEN

P,,,=A , = 0.
MAX

• If LO < A'AX, , = 1.

Theorem 2. There exists a unique value a* < AMAX for which E[S(l)] = E[Y(I)].

Proof. To show the existence of a*, it is sufficient to observe that E[S()] is a continuous function

of a over (-30, AM AX], that

E[S(I)I =° fl(1 -- 3AI) - 1 (N = E[Y(,)]
iEN

(this is Inequality (2)), and that

E[s(1)]11 1 -. MAX > A,) E[Y(,)].
MAXiEN/

Hence, by continuity, there must exist a value a* E (0, AjMAX) satisfying

E[S(,)]1'=a. = E[Y(,)1.

Furthermore, if w < AjAX,

11(I -w0s) -1

= iEN W + ) L E[Y(l)]
I- H(I - wA,) I - [I(I - wA,) ,EN/

iEN iEN

(this is Inequality (1)), hence, in general, a* E (0, min{w, AMAX}).
We prove the uniqueness of a* by induction on n, showing that E[S(I)] is a strictly increasing

function of a over (-o3, AM/Ax], hence we make the index n explicit in E[S(l)] by writing5

E[S0,,)] = min{S, : i E N}.
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Base step: For n = 2,

E[S(,,2)] =(1 - oA 1 )(l - a'A2)+
E[(I2) - aA1 + wA 1)(1 - erA 2 + wA 2) - (1 - o7A,)(1 - A2

I + tTAIA 2(W - (7)

Al + A2 + A, A2 W - 2or)

andl

dE[S(1, 2)] A, AA 2(w(Ai + A2 - 2A, A2o) + 2(1 - trA1 - aA2 + a 2A1 A2) + W 2A1 A2)
da (A1 + A2 + A, A2(W -2a)

>0 for o,<,\-'AX

_A 1A2(w(AI (I - tTA 2) + A2(1 - orAj) + 2(1 - a'Aj)(l - tTA 2) +w'AIA2) >0
(A] + A2 + A, A2(W -2a)

In particular,

lim_ E[S(1,2)] = -oc and hllm d~ 1 2)

andI

=[(,)1(=- AmiAX and dE[S(1,21 ) Kl E +~J'1

where AMIN = min{Aj,A 2}.

Inductive Hypothesis: Assume that, for a given n,

-Pu +

is a strictly increasing function of a' over (-oo, AMiAX], that is

dE[S(I ,,)] __pl(qvl - p~l) - p,,(q' - ppljq+ - p71 ,l- flqL+
da L (q,, - p,,) 2 t P7w+ (q,, - p,,)'

which implies

Va' E (-oo, A-'X] w(pq,,L - pnq,,)> -(qnj _ pu) 2

Inductive Step: Then the same holds for n + 1, that is,

EIS1,1+1 - Pn+i W0 + aT = Pn( - CTA?+1) -(~j U r
L'(1,uq)J - - pn&+1 q,1( 1 - a'Ajt+j + wAjj+i) - P"( 1 

- T~I )W T

where A,,+, is tihe rate of the (n+ 1 )-th exponential random variable, is a strictly increasing function
of (T over (-oo, max{AMAX, A,,+,)-'], that is

>-(qn-_pn) 2 for or,-'MAX

_____________ _ (1 - tTA,,+ 1)(1 - a'A,1~j + wA,t+1 ) (p?1qjL -p?&q1)W -A,~ 1 w qLp,t + 1
dt' (q,,( 1 - tTA,,+ 1 + wA,,+l) - p,i( 1 - (TAt ))2

(I - erA,L+I)( I - (7A,,+, + W, 1)(- -p,,)2) - A2+1 W 2 +

(q,( 1 - a'A71+1 + WoA71+1) - p,,( 1 - crA,,+l ))2

A1Wq - P71)((q?& + P7&)( 1 - CTA,t+i) + AL+iwqL > 0
(q,L( I - c'A,,+ 1 + wAL+1 ) -P7( 0 - (TAtI ))2



since, a < A-II and VO E (-oo,max{ AMAX,A +1}-],q,, > p,,. QED.

We might now ask whether this value or* for which E[S(q)] = E[Y(m)] is such that the other order

statistics coincide as well, that is, whether

Vi E N,i > 1, E[S(j)]G,=G. = ElY(i)].

This is indeed true for n = 2, since

E[S(l)] + E[S(2)] = E[S 1] + E[S2] = E[Y1 ] + E[Y2] = E[Y(I)] + E[Y(2 )]

implies that, whenever E[S(m)] = E[Y(1 )],

E[S(2)] = E[Y(2)]

Unfortunately, this is not true in general for n > 3, as it can be seen' considering the homogeneous

case. When Vi E N, Ai = A,

Pr{S(2) > kw + cr} = Pr{A(2) > k}

= Pr{(Vi E NAi >k) V(V(Az•k A Vi E NJ i iA, >k))

= Pr{ViE N,Ai > k}+ E Pr{A• < kAVj E N,j $ i, Aj > k}
iEN

= ((1 - + n(_ - (1 - - a))(I)k+-

= n(1 - c•)(,�1-)(k+1) - (n - 1)(1 - a)fl(k+l)

and

E[A(2)] = E Pr{A(2) > k}
k=O

00

- On(1 - a)(n-1)(k+l) - (n - 1)(1 -ay)'k+l)

k=O

n(1 - a)"-' (t - 1)(1 -
I - (I - o•)n-I I - (I -at)"•

Hence, considering S(2) = A(2)W + a and substituting a from (3),

E[S(2)] = - _n(1 - A)n-I' (n - 1)(l - aA)" +SI((I) = (l aA _'--wA7, I I- ~tTA)n_- -(1- o-A---w )" - (1--tA)" I +I

while, due to the absence of memory of the exponential distribution,

E[Y(2 )] = (nA)-' + ((n - ))A-l.

It can be easily verified numerically, for example when n = 3, W = 1/2, A = 1, that the only real

root of E[S(1 )] = E[Y(l)] is ao ; 0.173927, while the only real root less than A 1 of E[S(2 )] = E[Y(2 )]

is a - 0.346961.
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7 Variate generation application

The results of Section 3 can be used in variate generation for Monte Carlo simulation. For brevity,

only the geometric distribution is considered. Results for the modified geometric and shifted geo-

metric distributions are similar.

To generate a single Expo(A) random variate Y by inversion [1)

Y -- In(1 - U),

where U - Unif (0, 1). The random number 1 - U can be replaced by U for increased speed

although the direction of monotonicity is reversed. If Y - Expo(A) then [Y} - Geoni(l - c- A)

since Pr{[Y1 = k} = C-(k-1)A(l - C-A) for k E IN+. Thus to generate a Geom(a) random variate

X requires only a single line of code
[In(1 - U)

If the time-step is w, then the appropriate modification to generate a Geom(ft,w) random variate

is

X ln(I -U)]

The straightforward approach to generating the minimum Y(j) of n exponential random variables

{Y - Expo(Ai) : i E N} is to generate n exponential variates Y1,..., Y, then determine the

minimum and the associated index (if required). This approach becomes time consuming as n

increases. A much faster approach is to generate the minimum as

Yo) - In(1 - U)

iEN

where the denominator needs to be computed only ouce. This approach is both synchronized (one

random variate from Unif (0, 1), Ui is needed to generate one random variate for Yi),) and monotone

(given two random variates from Unif(O, 1), U1 and U"2, U, < U2:-Y(i), < YO), 2). To generate a
variate corresponding to the index J of the minimum value, use the pmf

Pr{J = j) - JI

iEN

for j E N.

There are two cases to be considered when generating the minimum of geometric random vari-

ables. The first is when the modeler wants the means of the individual random variables (but not

of their minimums) to match. The second is when the modeler wants the means of the minimums

(but not of the individual random variables) to match. Consider generating the minimum X(1 ) in

the first case, where {Xj - Geom(at,w): i E N}. First generate the minimum

[ n(l -U)

(') ln(1 - a,)
iENI

13



To generate a random set of indices I[f] corresponding to completion at th. minimum value, use

the pmf

Pr{[l1] = s} = (Ha) (EN\ )
1- fl(1-ag

IEN

for s C N,s s O.

There are two costs to consider when generating a set of indices corresponding to X(I). The

first cost is the set-up cost incurred once at the beginning of a simulation. If all of the 2" - 1 subsets

of indices are to be considered, the (0, 1) interval must be partitioned into as many pieces prior to

generating any variates. The second cost, often called the marginal cost to generate a variate, is

incurred each time a random. variate is generated. It involves generating a Unif(0, 1) variate and

searching the partition determined at the beginning of the simulation for the appropriate cell. This

cell corresponds to a set of indices for the generated geometric random variable. The above scenario
is worst-case, since time will be saved in both the set-up and marginal steps if, for example, the

modeler is only interested in whether or not a tie occurred.

The generation of Wl), where the expected values of the minimums of the exponential and

geometric random variables coincide, requires only a slight modification to the previous approach.

At the beginning of a simulation, E[IJ[1]II should be calculated. Thus the reduced geometric is

X0i)

E[I[Il]I]"

where X(1) is generated using the previous technique.

8 Conclusion

We have shown how, if the random variables {Xi : i E N}, {fY : i E N}, and {Zi : i E N}

model the same set of n concurrent activities using geometric, exponential, or modified geometric

distributions, respectively, with given expectations {AT-1, the expected value of the minimums are

different, E[X(l)] > E[Y(1)] > E[Z(m)]. Stochastic variability is employed to justify the result.

We then consider two different ways to match the expectation of the minimums. First, by

taking into account the possibility of ties in the geometric case, we define the "weighted minimum"

Wl), and obtain E[W(1)] = E[Y(1)], but this operation corresponds to decreasing the time-step
of the individual geometric distributions, hence their expectation. Alternatively, we introduce

the "shifted geometric distribution", which a generalizes both the geometric and the modified

geometric. We can then define a set of shifted geometric random variables {S1. i E N}, which

match in expectation the exponential random variables both individually, E[Si] = ,s-, and their

minimum, E[S(1)] = E[Y(m)]. Generating variates is straightforward.
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